Major types of Macromolecules

Carbohydrates

Lipids (Fats)

Proteins

Nucleic Acids (DNA, RNA)

Macromolecules are Organic Compounds

- Compounds that contain carbon
- Hydrogen, oxygen, nitrogen, phosphorus and sulfur can also be found in organic compounds

A lipid (a.k.a. fat)

Why Carbon?

- Carbon can form more bonds than any other element (4)
- This property allows carbon based molecules to be quite large and diverse

Types of bonds

C—C Single Bond (one pair of e shared)

C=C Double Bond (2 pairs of e shared)

C = C Triple Bond (3 pairs of e shared)

Monomers and Polymers

Organic compounds are made of **monomers** - individual subunits

Many monomers form **polymers** - larger molecules

Condensation and Hydrolysis Reactions

- Hydrolysis reactions
 break large molecules
 (polymers) into smaller
 ones by adding water
- Condensation, or dehydration synthesis builds large molecules from smaller ones by removing water

Two amino acids are shown at the top. In condensation, the amino acids are combined into a dipeptide. In hydrolysis, the dipeptide is split into two amino acids again.

All carbohydrates consist of the following molecules:

Mono-saccharide

contains one saccharide molecule

Di-saccharide

contains two saccharide molecules

Poly-saccharide

contains many saccharide molecules

Monosaccharides (glucose, fructose, galactose)

Monaosaccharides

Condensation Reaction (forming maltose – a disaccharide)

Polysaccharides (starch vs. cellulose)

(a) α and β glucose ring structures

(b) Starch: 1–4 linkage of α glucose monomers

digestable in animals by amylase

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Saturated and Unsaturated Fatty Acids

(a) Fat molecule (triacylglycerol)

Butyric Acid-Saturated Fatty Acid

Oleic Acid- Monounsaturated Fatty Acid

Linoleic Acid- Polyunsaturated Fatty Acid

Nucleotide

Five carbon sugar

Two amino acids bonded together (dipeptide - polymer)

Protein Structure

- Proteins are polymers made of amino acid monomers
- The shape of a protein determines its function
- The shape is determined by the order of amino acids in the protein

p53 tumor suppressor protein

Four Levels of Protein Structure

- Primary- order of a chain of amino acids
- Secondary formation of hydrogen bonds between amino acids in the polypeptide chain
- Tertiary folding of whole polypeptide chain
- Quaternary attractions between more than one polypeptide chain (results in the complete protein)

Enzymes

 Proteins that regulate chemical reactions in an organism

Enzymes act as <u>Catalysts</u>

Catalysts speed up chemical reactions without being used up or changed during the reaction

How do Enzymes Speed up Chemical Reactions?

- The energy required to get a chemical reaction started is the <u>activation</u> <u>energy</u>
- Enzymes work by
 <u>lowering the activation</u>
 <u>energy</u> to speed up the
 reaction

Factors affecting the rate of a reaction

- Amount of enzyme present
- Amount of substrate present
- Temperature and pH

Enzyme Denaturation

Enzyme is shown in yellow Blue molecules are the substrate

Reaction takes place normally

No reaction occurs (active site is damaged and substrate no longer fits)